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Abstract: A perceptron-type neural net was applied to the prediction of oxidation energies for 

dihydropyridines and related heterocycles. A set of 71 energies corresponding to heats of 

formation differences for reduced and oxidized derivatives were used to train the net using a 

back propagation algorithm. A system using four hidden units produced good duplication of the 

input values (SD = 0.298) and was useful in predicting unknown values (SD = 1.80). Finally, the 

output matrix was helpful in determining substituent effects. 

Introduction 

The redox characteristics of dihydropyridines and related compounds have been studied 

extensively as these structures represent the active electron donating components of such co- 

enzymes as NADH and NADPH3. Given this, cellular respiration is in large part based on this 

biochemically mediated interconversion. Understanding the kinetics and thermodynamics of 

dihydropyridine oxidation has therefore been an important and fruitful area of endeavor. In 

particular, various experimental and theoretical approaches have been applied to defining those 

structural parameters which add to or detract from compound stability. In this vein, 

semiempirical molecular orbital approximations such as the AM1 method have been usefu14*. 

In the current investigation, a model was sought to give greater insight into the relative 

importance of various molecular manipulations to the structure of dihydropyridines and related 

heterocycles. To this end, we here report on the use of a neural net as a method of both 

predicting reaction characteristics such as the energies associated with dihydropyridine oxidation, 

as well as to estimate the relative importance of various substitutions in these determinations. 
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Neural Networks 

A neural network is a parallel processing system in which the processing components or 

neurons are interconnected in a plexus (Fig. 1)7. In simple terms, this network is designed to 

mimic the multimodular architecture of biological neural systems in which nerve cells 

interconnect with one another by way of axonal synapses. Neural nets have found particular 

application in scenarios when the relationships between cause and effect cannot be precisely 

defined, i.e., circumstances in which complex nonlinear correlations exist between input and 

output, as in text-to-speech conversions’, language processing’ and various pattern 

rec0gniti0ns’0-‘5. Neural nets have only recently been applied to chemical problems and, as 

such, relatively few examples of such applications are available7*‘6’8. Various researchers have 

used artificial neural systems to predict protein structure from amino acid sequence 

information’e20 while others have applied neural nets to spectral identification programs17, nucleic 

acid sequence analysis’8 and QSAR problems’““. Bodor et al., have recently developed a 

program for estimating the aqueous solubility of organic compounds using this processing 

technologf’. Importantly, dissection of neural net methodologies has shown that they operate 

as a nonlinear multiregressional technique, although linear operators can be introducedi3. 

Hidden Layer 

Output Layer 

Figure 1. Schematic of a Neural Net 
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The network is composed of at least three distinct parts: an input layer, an output layer and 

any number of intermediate, interconnecting strata termed hidden layers. In the superstructure, 

each processor in the net is affected by those neurons to which it is attached, with the degree 

of influence being determined by a weighing factor. The nature of the system can therefore be 

modified by modulating the weights through a learning routine such as the delta or Widrow-Hoff 

rules. In the application presented here, the specific algorithm used is the back propagation 

system’2,22. 

In this method, the output, Oi, of a neuron, j, at the nth layer is a sigmoidal function of the 

total input of the unit as given by the equation: 

Oj = (1 + exp (-yJ)-’ VI 

where 

yi = & oiwii + 8 I PI I 

in which 0, is the output of the neuron, i, in the previous layer, W, is a weight factor which 

modulates the connectivity between units j and i and is therefore a weight matrix element and 

63, is termed the bias or the threshold for neuron, j. 

In teaching the net, each training set pattern is introduced at the input neurons and 

iteratively minimized until a desired error is obtained between the net output, Q, and the target 

pattern, &. The basic relationship in training the net is 

AWki = n&O, [31 

where n is a learning factor and S, is defined as 

4 = (fk - olJ1’ (Yk) [41 

VY,) = W,) = 0, (1-Q) 151 

Weight correcting begins with equation [3], i.e., the output unit, and is back propagated to the 

input. The S, term for the hidden layers (for which there is no predetermined value) is obtained 

recursively in terms of the 6 terms of the neurons to which it directly interdigitates and weights 

for those interdigitations. This is defined by 

q = f’(yJ F %W, = oj(l-oi) $&WM. 

The set is then trained either until there is convergence between actual outputs and target 

outputs or until a predetermined number of iterations is reached. If the trained network 
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demonstrates an acceptable error between actual and target outputs, the system can determine 

input patterns of the training set to the desired level of accuracy. 

Methods 

In the calculations described, a MicroVax II computer was employed. The neural network 

was implemented in Pascal and configured so as to allow for an arbitrary number of hidden 

layers and an arbitrary number of units within each layer. In training exercises, iterations were 

varied until the desired error was reached. Heats of formation differences (AA H,) for various 

dihydropyridines and their corresponding quaternary salts were obtained from the literaturez3 or 

estimated using the AM1 method 2425 . Input values for the neural net were adjusted to between 

0 and 1 by applying the following equation: 

MH, - MH,(min) 
input = AAH,(max) - MH,(min) 

where MH,(min) and MH,(max) refer to the minimum and maximum energy values in the 

training set, i.e., MH,(min) = 146.6 kcal/mol for the oxidation of 1-methyl-3-dimethylamino-l,4- 

dihydropyridine and MH,(max) = 173.0 kcal/mol for the oxidation of 1 -methyl-Strifluoroacetyl- 

1 ,Cdihydroquinoline. The program has both training and prognosticative capabilities. 

Results and Dlscusslon 

The study described applied a neural net to the study of the oxidation of various dihydro 

systems including 1 +-substituted phenyl)-1,4-dihydronicotinamides, 1 -methyl-3substituted-1,4- 

dihydropyridines, 1 -methyl-3-substituted-1,4-dihydroquinolines, 1 -methyl-3-substituted-1,2- 

dihydroquinolines and 2-methyl-4-substituted-1,2-dihydroisoquinolines to the corresponding 

aromatic salts23. A group of 71 compounds was evaluated and the energy associated with 

oxidation obtained using AM1 semiempirical molecular orbital approximation as the energy 

difference between the dihydro derivative and the corresponding quaternary salt. A group of 22 

parameters were assigned which included the five parent structures as well as 17 substituents. 

The training set matrix is given in Table I with associated MH, values. The MH, values were 

adjusted to between 0 and 1 as described in the Methods section and these input values then 

iteratively processed with the output minimized against the actual data. In all simulations, one 

hidden layer was used and the number of hidden units varied as summarized in Table II. One 

output neuron was used in the net. Three to ten hidden units gave standard deviations between 

0.045 and 0.32. Importantly, while high accuracy can be obtained, overtraining the system often 
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Table I. Heats of Formation Differences (Energies of Oxidation, AAHf) for a 
Series of Dihydropyridfnes and Related Heterocycles as well as 
Assigned Parameter Designations [in Brackets]. 
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Table ii. Effect of Various Hidden Layers on Neural Net Training and Prediction. 

Table iii. 

Hidden Unit 
Standard Deviation 

Trainina Set Test Set 

3 0.372 2.98 50,000 
4 0.298 1.80 10,000 
5 0.233 2.52 2,400 
6 0.171 2.00 2,400 
7 0.045 2.79 6,530 
8 0.318 1.44 3,900 
9 0.156 1.87 810 
10 0.141 2.24 1,150 

Number of 

Calculated (AM) and Predicted Heats of Formation Differences (MHf) 
for Various Dihydropyridines and Related Heterocycies. The Trained 
Neural Net incorporated Four Hidden Units. 

OCH3 

159.62 156.64 

153.26 151.67 

CH3 

CONH2 

R = CONH* 163.11 163.11 

R = COOCH3 163.76 162.80 

167.84 169.16 
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yields a net with poor predictive power as the input matrix tends to be “memorized” when large 

numbers of hidden units are used.” The best balance, with this in mind, was a system 

containing four hidden units. The configuration selected (Figure 2) gave a standard deviation 

of 0.298 for the training set. The ability of the neural net to predict unknown values was then 

tested using 5 previously unexamined compounds including 1-methyl-3-methoxy-1,4- 

dihydroquinoline [3-71, 1 -methyl-3-methyl-1,2-dihydroquinoline [4-81, 2-methyl-4-trifluoromethyl- 

1,2-dihydroisoquinoline [5-l 11, 1-(4-carbamoylphenyl)-1,4-dihydronicotinamide [l-l 21 and 1-(4- 

acetylphenyl)-1,4-dihydronicotinamide [l-l 41. The testing set was selected randomly based on 

missing elements in the training set matrix (See Table I). As indicated in Table III, the system 

accurately predicted the MH, values for the five compounds with a standard deviation of 1.8 

kcal/mol. 

output Layer 

Fig. 2. Neural Net configuration used in the present study. The parameter 
numbers are included in the input matrix and both input layer, hidden layer, and 
output layer are identified. Biases are not included in the representation. 

The first goal of the neural net was therefore met, i.e., a system for predicting energies 

associated with dihydropyridine oxidation. The second aspect of this study was to examine the 

relative importance of various substituents using the calculated output matrix. In this 

assessment, the relative significance of each parameter as to how it contributes to Ml-l, 

predictions was considered by including or excluding each parameter in the neural net output. 
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Table IV. Selected Output Matrix Values Reported as a Ratio Between Bubetituted and 
Unsubstituted Components for Various Neural Net Parameters 

Substituent 
N(CH,), 
OCH, 
CH, 

:I 
CF, 
CONH, 
COOCH, 
COCH, 
C(=NOH)CH, 
CO&H, 
COCF, 
C(=NOH)CF, 
CH,S 
CH,SO 
CN 
(CH&NO 

Outwt Ratio 
0.235 
0.829 
0.881 
1.152 
1.054 
1.640 
1.104 
1.170 
1.094 
0.854 
0.946 
2.076 
1.261 
0.875 
1.237 
1.425 
1.023 

2.0 - 
r = 0.92, p c 0.01 

0 CF3 / 

-0.5 0.0 0.5 1.0 

Hammett 0 

Fig. 3. Correlation between Hammett sigma (0) values for para 
substitution and weight matri? output ratios of the substltuted and 
unsubstituted conditions. 
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The weight matrix derived output values are given in Table IV. The m~nitude of these values, 

which represent the ratio of the substituted and unsubstituted conditions, were found to be useful 

in examining experimental behavior. For example, in the I-(Qsubstituted phenyl)-1,4- 

dihydronicotinamide series, the rank order of kinetic stability is well described by the parameter 

contributions of various substituents with a plot of the log of the second order rate constant for 

oxidation and output matrix ratios giving a positive linear relationship (r= 0.97)? Fu~hermore, 

the output ratios significantly correlated with Hammett sigma values with r z 0.9 (Figure 3). It 

has been reported that weight data are a highly complicated function of neural net structure and, 

therefore, may not be useful in simple interpretation. Such observations have been made in 

protein structure predictions. In the chemical sub~itution examples investigate herein, the 

weights obtained appear to give good linear correlations with electronic parameters and reactivity 

trends. 

These methods may prove to be helpful in a number of circumstan~s. In the present 

application, calculation of unknown energy values could be obtained theoretically. In examining 

experimentally derived values such estimations may not be possible. In addition, neural net 

analysis also may allow one to suggest which parameters in a data set significantly affect the 

process examined and which do not. In the current evaluation, a neural net was applied to 

estimation of oxidation energies. A training set was obtained and the resulting neural net useful 

in predi~ing unknown values. 
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