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Abstract: A perceptron-type neural net was applied to the prediction of oxidation energies for
dihydropyridines and related heterocycles. A set of 71 energies corresponding to heats of
formation differences for reduced and oxidized derivatives were used to train the net using a
back propagation algorithm. A system using four hidden units produced good duplication of the
input values (SD = 0.298) and was useful in predicting unknown values (SD = 1.80). Finally, the
output matrix was helpful in determining substituent effects.

Introduction

The redox characteristics of dihydropyridines and related compounds have been studied
extensively as these structures represent the active electron donating components of such co-
enzymes as NADH and NADPH®. Given this, cellular respiration is in large part based on this
biochemically mediated interconversion. Understanding the kinetics and thermodynamics of
dihydropyridine oxidation has therefore been an important and fruitful area of endeavor. In
particular, various experimental and theoretical approaches have been applied to defining those
structural parameters which add to or detract from compound stability. In this vein,
semiempirical molecular orbital approximations such as the AM1 method have been useful*®.
In the current investigation, a model was sought to give greater insight into the relative
importance of various molecular manipulations to the structure of dihydropyridines and related
heterocycles. To this end, we here ieport on the use of a neural net as a method of both
predicting reaction characteristics such as the energies associated with dihydropyridine oxidation,
as well as to estimate the relative importance of various substitutions in these determinations.
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Neural Networks

A neural network is a parallel processing system in which the processing components or
neurons are interconnected in a plexus (Fig. 1)’. In simple terms, this network is designed to
mimic the multimodular architecture of biological neural systems in which nerve cells
interconnect with one another by way of axonal synapses. Neural nets have found particular
application in scenarios when the relationships between cause and effect cannot be precisely
defined, i.e., circumstances in which complex nonlinear correlations exist between input and
output, as in text-to-speech conversions®, language processing® and various pattern

%15 Neural nets have only recently been applied to chemical problems and, as

recognitions
such, relatively few examples of such applications are available’'®'®. Various researchers have
used artificial neural systems to predict protein structure from amino acid sequence
information’®?° while others have applied neural nets to spectral identification programs'’, nucleic

acid sequence analysis' and QSAR problems' ™,

Bodor et al., have recently developed a
program for estimating the aqueous solubility of organic compounds using this processing
technology®'. Importantly, dissection of neural net methodologies has shown that they operate

as a nonlinear muitiregressional technique, although linear operators can be introduced',
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Figure 1. Schematic of a Neural Net
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The network is composed of at least three distinct parts: an input layer, an output layer and
any number of intermediate, interconnecting strata termed hidden layers. In the superstructure,
each processor in the net is affected by those neurons to which it is attached, with the degree
of influence being determined by a weighing factor. The nature of the system can therefore be
modified by modulating the weights through a learning routine such as the delta or Widrow-Hoff
rules. In the application presented here, the specific algorithm used is the back propagation
system'%,

In this method, the output, O, of a neuron, j, at the nth layer is a sigmoidal function of the
total input of the unit as given by the equation:

O;=(1+exp SO !
where
Y= IZ OW; + €, [2]

in which O, is the output of the neuron, i, in the previous layer, W, is a weight factor which
modulates the connectivity between units j and i and is therefore a weight matrix element and
©, is termed the bias or the threshold for neuron, j.

In teaching the net, each training set pattern is introduced at the input neurons and
iteratively minimized until a desired error is obtained between the net output, O,, and the target
pattern, t,. The basic relationship in training the net is

AW, = 13,0 (31

where 1 is a learning factor and §, is defined as

8 = (& - OJF (v (4]
with

'y = df{y) = O, (1-Oy) (5]

Weight correcting begins with equation [3], i.e., the output unit, and is back propagated to the
input. The 8, term for the hidden layers (for which there is no predetermined value) is obtained
recursively in terms of the & terms of the neurons to which it directly interdigitates and weights
for those interdigitations. This is defined by

§ = f(y) kz 3 W, = O(1-0) ;&ij.

The set is then trained either until there is convergence between actual outputs and target
outputs or until a predetermined number of iterations is reached. If the trained network
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demonstrates an acceptable error between actual and target outputs, the system can determine
input patterns of the training set to the desired level of accuracy.

Methods

In the calculations described, a MicroVax Il computer was employed. The neural network
was implemented in Pascal and configured so as to allow for an arbitrary number of hidden
layers and an arbitrary number of units within each layer. In training exercises, iterations were
varied until the desired error was reached. Heats of formation differences (AA H,) for various
dihydropyridines and their corresponding quaternary salts were obtained from the literature® or
estimated using the AM1 method®*#®. Input values for the neural net were adjusted to between
0 and 1 by applying the following equation:

AAH, - AAH,(min)
input = AAH(max) - AAH,(min)

where AAH(min) and AAH(max) refer to the minimum and maximum energy values in the
training set, i.e., AAH(min) = 146.6 kcal/mol for the oxidation of 1-methyl-3-dimethylamino-1,4-
dihydropyridine and AAH,(max) = 173.0 kcal/mol for the oxidation of 1-methyl-3-trifluoroacetyl-
1,4-dihydroquinoline. The program has both training and prognosticative capabilities.

Results and Discussion

The study described applied a neural net to the study of the oxidation of various dihydro
systems including 1-(4-substituted phenyl)-1,4-dihydronicotinamides, 1-methyl-3-substituted-1,4-
dihydropyridines, 1-methyl-3-substituted-1,4-dihydroquinolines, 1-methyl-3-substituted-1,2-
dihydroquinolines and 2-methyl-4-substituted-1,2-dihydroisoquinolines to the corresponding
aromatic salts®®. A group of 71 compounds was evaluated and the energy associated with
oxidation obtained using AM1 semiempirical molecular orbital approximation as the energy
difference between the dihydro derivative and the corresponding quaternary salt. A group of 22
parameters were assigned which included the five parent structures as well as 17 substituents.
The training set matrix is given in Table | with associated AAH, values. The AAH, values were
adjusted to between 0 and 1 as described in the Methods section and these input values then
iteratively processed with the output minimized against the actual data. In all simulations, one
hidden layer was used and the number of hidden units varied as summarized in Table 1l. One
output neuron was used in the net. Three to ten hidden units gave standard deviations between
0.045 and 0.32. Importantly, while high accuracy can be obtained, overtraining the system often
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Table I. Heats of Formation Differences (Energies of Oxidation, AAH;) for a
Serles of Dihydropyridines and Related Heterocycles as well as
Assigned Parameter Designations [in Brackets].

CONH2
U R R N R R\
C O o) o o
| | | ot

CHs CHg CHg
A [2] [3] [4] [S]
R 1] AAHs (Kcal/mol)

[6] N(CHz), 1526 146.6 153.9 151.4 148.7
[71 OCH; 157.0 163.7 156.2 157.3
[8] CHj; 158.0 152.8 157.6 167.7
[9] F 162.0 161.3 165.0 161.5 159.2
[10] Ci 161.7 159.4 162.9 158.7 158.2
[11] CF; 166.3 168.2 170.1 164.4

[12] CONH, 159.3 164.3 157.7 159.9
[13] COOCH;, 162.5 165.0 158.8 162.7
[14] COCH3; ) 160.7 164.0 157.3 161.3
[15] C(=NOH)CH, 154.5 158.5 153.2 162.5
[16] COCgHs 158.1 161.5 155.7 157.8
[17] COCF; 171.4 173.0 165.6 170.7
[18] C(=NOH)CF,4 161.4 164.3 158.6 168.4
[19] CHsS 155.3 158.8 154.8 1568.5
[20] CH3SO 165.7 165.3 1571 164.7
[21] CN 165.7 168.2 162.7 165.6

[22] (CHa)NO 159.0 161.9 156.2 160.4
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Table Il. Effect of Various Hidden Layers on Neural Net Tralning and Prediction.

Standard Deviation Number of
Hidden Unit Training Set Test Set lterations
3 0.372 2.98 50,000
4 0.298 1.80 10,000
5 0.233 2.52 2,400
6 0.171 2.00 2,400
7 0.045 2.79 6,530
8 0.318 1.44 3,900
9 0.156 1.87 810
10 0.141 2.24 1,150

Table lll. Calculated (AM1) and Predicted Heats of Formation Differences (AAHy)
for Various Dihydropyridines and Related Heterocycles. The Trained
Neural Net Incorporated Four Hidden Units.

AAHy (Kcal/Mol)
Compound AM1 Neural Net
Calculated Predicted
OCHs
m 159.62 156.84
N
|
CH3
N CH3
@\/\/f 153.26 151.67
N
|
CHs
CFs

@é 167.84 169.16
N
N

N R =CONH, 163.11 163.11

@ R = COOCH; 163.76 162.80
R
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yields a net with poor predictive power as the input matrix tends to be "memorized” when large
numbers of hidden units are used." The best balance, with this in mind, was a system
containing four hidden units. The configuration selected (Figure 2) gave a standard deviation
of 0.298 for the training set. The ability of the neural net to predict unknown values was then
tested using 5 previously unexamined compounds including 1-methyl-3-methoxy-1,4-
dihydroquinoline [3-7], 1-methyl-3-methyl-1,2-dihydroquinoline [4-8], 2-methyl-4-trifluoromethyl-
1,2-dihydroisoquinoline [5-11], 1-(4-carbamoylphenyl)-1,4-dihydronicotinamide [1-12] and 1-(4-
acetylphenyl)-1,4-dihydronicotinamide [1-14]. The testing set was selected randomly based on
missing elements in the training set matrix (See Table 1). As indicated in Table I, the system
accurately predicted the AAH, values for the five compounds with a standard deviation of 1.8
keal/moi.

Input Layer

Hidden Layer

Output Layer

Fig. 2. Neural Net configuration used in the present study. The parameter
numbers are included in the input matrix and both input layer, hidden layer, and
output layer are identified. Biases are not included in the representation.

The first goal of the neural net was therefore met, i.e., a system for predicting energies
associated with dihydropyridine oxidation. The second aspect of this study was to examine the
relative importance of various substituents using the calculated output matrix. In this
assessment, the relative significance of each parameter as to how it contributes to AAH,
predictions was considered by including or excluding each parameter in the neural net output.
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Table IV. Selected Output Matrix Values Reported as a Ratio Between Substituted and
Unsubstituted Components for Varlous Neural Net Parameters

Parameter Substituent Output Ratio
[6] N(CH,), 0.235
[7 OCH, 0.829
(8] CH, 0.881
9] F 1.152

[10] Cl 1.054
[11] CF, 1.640
[12] CONH, 1.104
[13] COOCH, 1.170
[14] COCH;, 1.094
[15] C(=NOH)CH, 0.854
[16] COCH, 0.946
N7 COCF, 2.076
(18] C(=NOH)CF, 1.261
[19] CH,S 0.875
[20] CH,S0 1.237
[21} CN 1.425
[22] (CH,),NO 1.023
20
r=0.92, p <0.01

151
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Fig. 3. Correlation between Hammett sigma (o) values for para
substitution and weight matrix output ratios of the substituted and
unsubstituted conditions.
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The weight matrix derived output values are given in Table IV. The magnitude of these values,
which represent the ratio of the substituted and unsubstituted conditions, were found to be useful
in examining experimental behavior. For example, in the 1-(4-substituted phenyi)-1,4-
dihydronicotinamide series, the rank order of kinetic stability is well described by the parameter
contributions of various substituents with a plot of the log of the second order rate constant for
oxidation and output matrix ratios giving a positive linear relationship (r= 0.97)*%. Furthermore,
the output ratios significantly correlated with Hammett sigma values with r> 0.9 (Figure 3). It
has been reported that weight data are a highly complicated function of neural net structure and,
therefore, may not be useful in simple interpretation. Such observations have been made in
protein structure predictions. In the chemical substitution examples investigated herein, the
weights obtained appear to give good linear correlations with electronic parameters and reactivity
trends.

These methods may prove to be helpful in a number of circumstances. In the present
application, calculation of unknown energy values could be obtained theoretically. In examining
experimentally derived values such estimations may not be possible. In addition, neural net
analysis aiso may aliow one to suggest which parameters in a data set significantly affect the
process examined and which do not. In the current evaluation, a neural net was applied to
estimation of oxidation energies. A training set was obtained and the resulting neural net useful
in predicting unknown values.
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